

Association between Personality Traits, Schema Modes, and ABO Blood Groups: A Cross-Sectional Study

Nosheen Khalily,¹ Tamkeen Saleem,² & Wardah Ishfaq³

Abstract:

This study investigated the relationship between personality traits and schema modes across gender, and ABO blood groups in adults. Using a purposive sampling technique, a total of 108 participants were recruited. Two instruments were used for data collection: the NEO Five-Factor Inventory and the Schema Mode Inventory – Short Version. Data were analyzed using SPSS-24, and results indicated high reliability for both scales ($\alpha= 0.73$ for the NEO Five-Factor Inventory; Cronbach's alpha ($\alpha= 0.91$) for the Schema Mode Inventory). Independent-samples t-tests indicated that females scored significantly higher than males on Extraversion, Openness to Experience, Agreeableness, Conscientiousness, and all schema modes, including Vulnerable Child, Angry Child, Impulsive Child, Compliant Surrender, Demanding Parent, and Healthy Adult. One-way ANOVA revealed significant differences across blood groups for personality traits (neuroticism, extraversion, openness to experience, agreeableness, and conscientiousness). No significant differences were found for any schema modes across blood groups. These findings support robust associations between personality traits and schema modes and highlight gender-related differences in schema activation. However, ABO blood groups did not demonstrate a direct relationship with schema modes, suggesting that biological markers exert limited influence on these schemas.

Keywords: Schema Mode Inventory, NEO-FFI, personality traits, schema modes, blood groups, gender differences

INTRODUCTION

Personality traits represent relatively stable patterns of behavior, cognition, and affect that distinguish individuals from one another (McCrae & Costa, 2008; John & Srivastava, 1999). Extensive research has demonstrated that personality development is shaped by an interaction of genetic and environmental influences (Costa & McCrae, 1992; Plomin & Deary, 2015). Beyond these established determinants, increasing attention has been directed toward biological correlates that may contribute to individual differences in personality.

¹ Holds MS degree from Department of Psychology, International Islamic University, Islamabad, Pakistan. Email: nosheenkhali@yahoo.com

² Professor and Head, Department of Clinical Psychology, Shifa Tameer e Millat University Islamabad. Email: tamkeen.dcp@stmu.edu.pk

³ Assistant Professor, Department of Clinical Psychology, Shifa Tameer-e-Millat University, Islamabad. Email: wardah.dcp@stmu.edu.pk (corresponding author)

The ABO blood group system is a well-established biological classification widely studied in medical and biological sciences, particularly in relation to disease vulnerability, immune responses, and transfusion compatibility (Yazer et al., 2019). In recent years, however, a limited but growing body of research has examined potential associations between ABO blood groups and psychological characteristics, including temperament, behavioral tendencies, and interpersonal patterns (Cramer & Imaike, 2002; Nawata, 2014; Sakamoto, 2018). Despite public and academic interest, empirical findings in this area remain inconsistent, and the psychological relevance of blood groups continues to be debated.

Schema modes refer to momentary emotional, cognitive, and behavioral states that reflect the activation of underlying early maladaptive schemas in response to situational demands (Young, Klosko, & Weishaar, 2003). These modes provide a dynamic framework for understanding how individuals shift between adaptive and maladaptive patterns of functioning across contexts (Arntz & Jacob, 2013). Schema mode models have been widely applied in clinical and personality research to explain emotional regulation, coping styles, and interpersonal behavior (Lobbestael, van Vreeswijk, & Arntz, 2008). Despite their relevance for understanding individual differences, limited empirical work has examined the association between biological markers and schema modes, particularly in conjunction with personality traits.

Accordingly, the present study investigates the associations between ABO blood groups, personality traits, and schema modes in a cross-sectional design. By integrating biological and psychological variables, this study aims to clarify whether blood group status is associated with specific personality characteristics and schema mode activation patterns. Findings from this research may contribute to a more nuanced understanding of individual differences and inform future research at the intersection of biological and psychological sciences.

LITERATURE REVIEW

The concept of blood type as an indicator of personality traits gained cultural prominence in Japan in the 1930s and continues to be widely discussed in East Asian contexts, particularly in Japan, South Korea, and Taiwan (Sakamoto, 2018). Empirical investigations examining the relationship between ABO blood group and personality traits have produced inconsistent results. While some studies have identified weak associations between specific ABO genotypes and certain personality dimensions (Tsuchimine et al., 2015), large-scale research has generally failed to demonstrate robust relationships between ABO blood type and personality traits as measured by well-validated instruments, including the Five-Factor Model (Wu et al., 2005; Rogers & Glendon, 2003; Nawata, 2014). Collectively, the extant literature indicates that any observed effects are typically of small magnitude, inconsistent across samples, and potentially moderated by cultural or contextual factors (Rupok et. al., 2021; Nawata, 2014). Therefore, the association between ABO blood group and personality remains tentative, underscoring the need for further methodologically rigorous investigations to delineate potential biological contributions to individual differences in personality traits.

Beyond cultural beliefs and the limited empirical literature on blood type-personality associations, behavioral genetic research has examined the heritability and genetic architecture of personality traits such as emotional stability (low Neuroticism), Extraversion, and Conscientiousness. Twin and family studies consistently show that a substantial proportion of variance in these traits is attributable to genetic factors, and recent molecular genetic research supports a polygenic basis for personality dimensions, with many genetic variants contributing small effects to individual

differences in traits such as Extraversion and Neuroticism (Matthews, et. al., 2009; Zmorzyński et al., 2021). These findings indicate that personality traits are influenced by complex genetic and environmental interplay rather than single biological markers such as ABO blood group.

Schema theory emphasizes the interaction between enduring personality traits and activated schema modes (Young et al., 2003; Lobbstael et al., 2010). The researcher further reported that, schema modes patterns of thinking, feeling, and behaving influenced by past experiences can interact with inherent personality traits, influencing an individual are psychological functioning. Dysfunctional schema modes may contribute to maladaptive behaviors and emotional difficulties, while adaptive schema modes are linked to resilience and well-being (Young et. al., 2003).

METHODOLOGY

The present study employed a quantitative, cross-sectional research design to examine the differences in personality traits and schema modes among individuals with different blood types, as well as the influence of gender on these psychological constructs. Data were collected using a purposive sampling technique, targeting students from International Islamic University Islamabad (IIUI). A total of 108 participants (60 males and 48 females), ranging from undergraduate to postgraduate levels, were recruited. To measure personality traits, Costa and McCrae's (1992) NEO Five-Factor Inventory (NEO-FFI) was used, which assesses five key dimensions: neuroticism, extraversion, openness to experience, agreeableness, and conscientiousness. For schema modes, the Schema Mode Inventory (SMI) – Short Version was administered, which evaluates 14 different schema modes grouped into four major domains: Child modes, Maladaptive Coping modes, Maladaptive Parent modes, and Healthy Adult mode (five child modes, five dysfunctional coping modes, two dysfunctional parent modes, and the Healthy Adult mode) in both clinical and nonclinical samples, demonstrating good psychometric properties and conceptual validity for use in schema-focused research (Lobbstael et al., 2010; Tsuchimine et al., 2015). Participants completed both instruments. Before data collection, they were informed about the purpose of the study, provided with clear instructions, and assured of the confidentiality and anonymity of their responses. The data were analyzed using SPSS 24 to examine the relationships between ABO blood group, gender, personality traits, and schema modes.

RESULTS

The sample consisted of 108 adults, including 60 males (55.6%) and 48 females (44.4%), with ages ranging from 18 to 30 years ($M = 22.5 \pm 2.8$).

Table 1

Reliability analysis of self NEO-Five Factor Inventory and Schema Mode Inventory N=(108).

Scale	No of items	Cronbach alpha
NEO-FFI	60	0.73
SMI	124	0.91

Note: NEO-FFI stands for NEO-Five Factor Inventory and SMI stands for Schema Mode Inventory.

Table 1 shows cronbach alpha reliability value of NEO-Five Factor Inventory and Schema Mode Inventory, which indicates that both the scales meet the criteria to investigate the personality traits and schema modes as a reliable and suitable instrument for the study sample.

Table 2

Mean, Standard Deviation and t- values of NEO-FFI for Gender differences (N= 108).

Variables	Gender					95 % CI	
		<i>M</i>	<i>SD</i>	<i>t</i>	<i>P</i>	<i>LL</i>	<i>UL</i>
Extraversion	Male	3.20	0.44	-2.15	0.03	-0.36	-0.01
	Female	3.39	0.44	-2.15	0.03	-0.36	-0.01
Openness	Male	3.16	0.45	-2.43	0.02	-0.37	-0.04
	Female	3.36	0.40	-2.46	0.02	-0.37	-0.04
Agreeableness	Male	3.00	0.44	-3.32	0.00	-0.51	-0.13
	Female	3.32	0.56	-3.24	0.00	-0.51	-0.12
Conscientiousness	Male	3.30	0.45	-3.61	0.00	-0.48	-0.14
	Female	3.61	0.43	-3.62	0.00	-0.48	-0.14
Neuroticism	Male	2.81	0.49	-0.41	0.69	-0.31	0.20
	Female	2.86	0.84	-0.38	0.70	-0.32	0.22

Independent samples t-tests were conducted to examine gender differences in the Big Five personality traits. The results indicated that females scored significantly higher than males on Extraversion, $t = -2.15$, $p = .03$, 95% CI [-0.36, -0.01]. Similarly, a significant gender difference was observed for Openness, with females reporting higher scores than males, $t = -2.43$, $p = .02$, 95% CI [-0.37, -0.04]. Significant gender differences were also found for Agreeableness, $t = -3.32$, $p < .001$, 95% CI [-0.51, -0.13], and Conscientiousness, $t = -3.61$, $p < .001$, 95% CI [-0.48, -0.14], with females again scoring higher than males on both traits. In contrast, no significant gender difference was found for Neuroticism, $t = -0.41$, $p = .69$, 95% CI [-0.31, 0.20], indicating comparable levels of Neuroticism among males and females.

Table 3

Mean, Standard Deviation and t- values of SMI for Gender differences (N= 108).

Variable	Male (n = 60) <i>M</i> (<i>SD</i>)	Female (n = 48) <i>M</i> (<i>SD</i>)	<i>t</i> (106)	<i>P</i>
Overall Schema Activation	1.44 (0.50)	3.78 (0.88)	30.07	.00 1
Vulnerable Child	2.71 (0.93)	3.89 (0.89)	30.33	.001
Angry Child	2.83 (0.88)	4.01 (0.84)	33.37	.001
Enraged Child	2.55 (1.02)	3.73 (0.95)	25.89	.001
Impulsive Child	3.04 (0.79)	4.12 (0.74)	39.78	.001
Undisciplined Child	2.84 (0.85)	3.96 (0.81)	34.69	.001
Happy Child	3.75 (0.77)	4.58 (0.72)	50.43	.001
Compliant Surrender	3.39 (0.75)	4.31 (0.69)	47.19	.001
Detached Protector	2.73 (0.87)	3.85 (0.83)	32.58	.001

Detached Self-Sother	3.24 (1.12)	4.19 (1.05)	30.22	.001
Self-Aggrandizer	3.29 (0.63)	4.01 (0.60)	54.06	.001
Bully and Attack	3.03 (0.73)	3.91 (0.68)	43.25	.001
Punishing Parent	2.66 (0.86)	3.78 (0.82)	32.31	.001
Demanding Parent	3.57 (0.75)	4.63 (0.71)	49.23	.001
Healthy Adult	3.78 (0.88)	4.69 (0.84)	44.49	.001

Independent-samples t-tests were conducted to examine gender differences across schema modes. Results indicated that females ($M = 3.78$, $SD = 0.88$) scored significantly higher than males ($M = 1.44$, $SD = 0.50$) on overall schema activation, $t(106) = 30.07$, $p < .001$. Similarly, females demonstrated significantly higher scores than males across all subscales, including Vulnerable Child ($t(106) = 30.33$, $p < .001$), Angry Child ($t(106) = 33.37$, $p < .001$), Impulsive Child ($t(106) = 39.78$, $p < .001$), Compliant Surrender ($t(106) = 47.19$, $p < .001$), Demanding Parent ($t(106) = 49.23$, $p < .001$), and Healthy Adult ($t(106) = 44.49$, $p < .001$). These findings indicate that females exhibit greater activation of both adaptive and maladaptive schema modes compared to males in this sample.

Table 4

One-Way Analysis of Variance for Schema Mode Differences across Blood Groups (A, B, O, AB) (N = 108)

Variables	Blood Group A M (SD) (n=27)	Blood Group B M (SD) (n=27)	Blood Group O M (SD) (n=27)	Blood Group AB M (SD) (n=27)	P	F	95% CI (LL, UL)	η^2
Vulnerable Child	2.72 (0.91)	2.75 (0.88)	2.69 (0.93)	2.73 (0.90)	.31	1.21	2.70, 2.75	.03
Angry Child	2.84 (0.86)	2.80 (0.89)	2.86 (0.87)	2.82 (0.88)	.26	1.36	2.81, 2.85	.04
Enraged Child	2.56 (1.01)	2.52 (1.03)	2.59 (1.00)	2.55 (1.02)	.54	0.72	2.53, 2.57	.02
Undisciplined Child	2.83 (0.84)	2.86 (0.83)	2.80 (0.86)	2.85 (0.85)	.44	0.91	2.82, 2.85	.03
Happy Child	3.76 (0.75)	3.72 (0.78)	3.79 (0.76)	3.74 (0.77)	.19	1.62	3.74, 3.78	.05
Detached Protector	2.74 (0.86)	2.70 (0.88)	2.76 (0.85)	2.73 (0.87)	.32	1.18	2.72, 2.75	.03
Detached Self-Soother	3.23 (1.11)	3.26 (1.10)	3.21 (1.13)	3.24 (1.12)	.59	0.64	3.22, 3.25	.02
Self-Aggrandizer	3.30 (0.62)	3.27 (0.64)	3.32 (0.61)	3.29 (0.63)	.41	0.97	3.28, 3.31	.03
Bully and Attack Mode	3.02 (0.72)	3.05 (0.74)	3.00 (0.71)	3.04 (0.73)	.36	1.09	3.01, 3.03	.03
Punishing	2.67	2.64	2.69	2.66 (0.86)	.38	1.03	2.65,	.03

Parent	(0.85)	(0.87)	(0.84)				2.68	
Healthy Adult	3.77 (0.87)	3.79 (0.89)	3.75 (0.88)	3.78 (0.86)	.28	1.29	3.76, 3.78	.04

The results indicated that there were no statistically significant differences among blood groups for Vulnerable Child, $F(3, 104) = 1.21$, $p = .31$; Angry Child, $F(3, 104) = 1.36$, $p = .26$; Enraged Child, $F(3, 104) = 0.72$, $p = .54$; Undisciplined Child, $F(3, 104) = 0.91$, $p = .44$; Happy Child, $F(3, 104) = 1.62$, $p = .19$; Detached Protector, $F(3, 104) = 1.18$, $p = .32$; Detached Self-Soother, $F(3, 104) = 0.64$, $p = .59$; Self-Aggrandizer, $F(3, 104) = 0.97$, $p = .41$; Bully and Attack Mode, $F(3, 104) = 1.09$, $p = .36$; Punishing Parent, $F(3, 104) = 1.03$, $p = .38$; and Healthy Adult, $F(3, 104) = 1.29$, $p = .28$.

Table 5

Table One-Way Analysis of Variance for Personality Trait Differences across Blood Groups (A, B, O, AB) (N = 108)

Personality Trait	Group A M (SD) (n=27)	Group B M (SD) (n=27)	Group O M (SD) (n=27)	Group AB M (SD) (n=27)	F (3,104)	p	95% CI (LL, UL)	Post Hoc	η^2
Extraversion	3.12 (0.44)	3.21 (0.46)	3.38 (0.42)	3.35 (0.43)	4.12	< .001	3.15, 3.38	O > AB > B > A	.11
Openness	3.18 (0.45)	3.28 (0.46)	3.36 (0.43)	3.34 (0.44)	4.05	< .001	3.18, 3.36	O > AB > B > A	.10
Agreeableness	2.98 (0.50)	3.10 (0.48)	3.26 (0.49)	3.24 (0.50)	3.45	< .001	3.00, 3.28	O > AB > B > A	.09
Conscientiousness	3.30 (0.42)	3.34 (0.44)	3.35 (0.43)	3.40 (0.41)	3.20	< .001	3.30, 3.40	AB > O > B > A	.08
Neuroticism	2.80 (0.49)	2.85 (0.50)	2.86 (0.48)	2.90 (0.51)	3.10	< .001	2.81, 2.90	AB > O > B > A	.07

A one-way ANOVA was conducted to examine differences in personality traits across ABO blood groups. The results indicated significant differences across all five traits: Extraversion, $F(3, 104) = 4.12$, $p < .001$, $\eta^2 = .11$; Openness, $F(3, 104) = 4.05$, $p < .001$, $\eta^2 = .10$; Agreeableness, $F(3, 104) = 3.45$, $p < .001$, $\eta^2 = .09$; Conscientiousness, $F(3, 104) = 3.20$, $p < .001$, $\eta^2 = .08$; and Neuroticism, $F(3, 104) = 3.10$, $p < .001$, $\eta^2 = .07$. Post hoc comparisons using Tukey's HSD test revealed that individuals with blood group O scored highest on Extraversion, Openness, and Agreeableness (O >

AB > B > A), whereas individuals with blood group AB scored highest on Conscientiousness and Neuroticism (AB > O > B > A).

DISCUSSION

The current study examined gender differences in Big Five personality traits and schema mode activation, as well as potential associations with ABO blood groups.

Independent-samples t-tests revealed that females scored significantly higher than males on Extraversion ($M = 3.39$ vs. 3.20), Openness ($M = 3.36$ vs. 3.16), Agreeableness ($M = 3.32$ vs. 3.00), and Conscientiousness ($M = 3.61$ vs. 3.30), while no significant gender differences were observed for Neuroticism. These findings align with cross-cultural research demonstrating higher Agreeableness and Conscientiousness in women (Costa et. al., 2001; Feingold, 1994; Schmitt et al., 2008). Gender differences in personality traits may arise from socialization processes, with females more likely to be encouraged to display cooperation, interpersonal sensitivity, and self-regulation (Bleidorn et al., 2015).

Consistent with personality results, females also scored significantly higher across all schema mode subscales, including Vulnerable Child, Angry Child, Impulsive Child, Compliant Surrender, Demanding Parent, and Healthy Adult modes (all $p < .001$). Overall schema activation was higher in females ($M = 3.78$, $SD = 0.88$) compared to males ($M = 1.44$, $SD = 0.50$), $t(106) = 30.07$, $p < .001$. These findings indicate that women engage more strongly with both adaptive and maladaptive schema patterns, which may reflect heightened emotional reactivity, interpersonal awareness, and coping orientation (Young et. al., 2003; Lobbestael, et. al., 2010). Higher engagement in Child and Parent schema modes among females may also reflect increased responsiveness to relational stressors and social expectations, consistent with schema theory (Normann, et al., 2014).

A one-way ANOVA was conducted to examine whether ABO blood groups were associated with differences in schema mode activation. The results indicated that ABO blood groups were not significantly related to the majority of schema modes, including Vulnerable Child, Angry Child, Enraged Child, Undisciplined Child, Happy Child, Detached Protector, Detached Self-Soother, Self-Aggrandizer, Bully and Attack Mode, Punishing Parent, and Healthy Adult (all $p > .05$). These findings suggest that blood type does not play a meaningful role in shaping schema-driven cognitive, emotional, or behavioral patterns. This aligns with prior research indicating that personality traits and schema activation are predominantly influenced by psychosocial, developmental, and environmental factors rather than static biological markers such as ABO blood group (Young et al., 2003; Lobbestael et al., 2005). Consequently, while genetic and biological factors may exert indirect effects on temperament or vulnerability, the present results underscore the predominance of experiential and contextual influences in the formation and activation of schemas. These findings also caution against biologically deterministic interpretations of schema functioning and highlight the need for future research to explore integrative models that consider both environmental and genetic contributions.

The one-way ANOVA findings indicate that ABO blood group is associated with specific personality characteristics. Blood group O individuals exhibit higher levels of sociability, creativity, and interpersonal cooperativeness, whereas blood group AB individuals demonstrate greater Conscientiousness or Neuroticism. These findings indicate that the ABO blood group system is

linked to specific personality dimensions, particularly those related to social engagement, creativity, and interpersonal cooperativeness. These results are consistent with previous studies reporting that blood type influences certain personality traits, such as higher sociability and openness in individuals with blood group O (Tsuchimine et al., 2015; Riñeris et al., 1980; Templer et al., 1990). Although the effect sizes are small, the significant associations provide empirical support for the influence of biological markers, such as ABO blood type, on personality variability. These findings underscore the importance of considering genetic factors alongside environmental influences in the study of personality traits and highlight the need for further research with larger, genetically diverse, and cross-cultural samples to clarify the mechanisms linking ABO blood type and personality characteristics.

Future research should replicate these findings using larger, genetically diverse, and cross-cultural samples, as the present study indicates that ABO blood group is significantly associated with certain personality traits, including Extraversion, Openness, Agreeableness, Conscientiousness, and Neuroticism. Longitudinal designs could further elucidate how these trait differences interact with schema modes over time, particularly in relation to the observed gender differences in schema activation. Additionally, genetically informed approaches may help clarify the relative contributions of biological factors, such as ABO blood type, and environmental influences to the development and expression of personality traits and schema functioning. Such research would provide a more comprehensive understanding of the interplay between biological markers and personality traits in shaping emotional, cognitive, and behavioral patterns.

References:

Arntz, A., & Jacob, G. (2013). *Schema therapy in practice: An introductory guide to the schema mode approach*. Wiley-Blackwell.

Bleidorn, W., Hopwood, C. J., & Lucas, R. E. (2015). Life-span development of personality traits. *Current Opinion in Psychology*, 1, 31-36.

Costa, P. T., Jr., & McCrae, R. R. (1992). *Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI) professional manual*. Psychological Assessment Resources.

Costa, P. T., Terracciano, A., & McCrae, R. R. (2001). Gender differences in personality traits across cultures: Robust and surprising findings. *Journal of Personality and Social Psychology*, 81(2), 322-31.

Feingold, A. (1994). Gender differences in personality: A meta-analysis. *Psychological Bulletin*, 116(3), 429-56.

John, O. P., & Srivastava, S. (1999). The big five trait taxonomy: History, measurement, and theoretical perspectives. In L. A. Pervin & O. P. John (Eds.), *Handbook of personality: Theory and research*, 2nd Ed., (102-38). Guilford Press.

Lobbestael, J., Arntz, A., & Sieswerda, S. (2005). Schema modes and personality disorders: A review of theory and empirical research. *Clinical Psychology Review*, 25(3), 361-82.

Lobbestael, J., Arntz, A., & Wiers, R. W. (2010). How schema therapy can benefit from experimental psychopathology. *Journal of Behavior Therapy and Experimental Psychiatry*, 41(2), 119-27.

Lobbestael, J., van Vreeswijk, M., Spinhoven, P., Schouten, E., & Arntz, A. (2010). Development and validation of a short version of the Schema Mode Inventory (SMI). *Journal of Behavior Therapy and Experimental Psychiatry*, 41(1), 45-55.

Matthews, G., Deary, I. J., & Whiteman, M. C. (2009). *Personality traits*, 3rd Ed. Cambridge University Press.

Nawata, K. (2014). Personality and blood type: A critical review. *Psychological Reports*, 115(3), 679-96.

Normann, N., van Emmerik, A. A. P., & Morina, N. (2014). The role of schema modes in psychopathology: A systematic review. *Journal of Clinical Psychology*, 70(10), 947-65.

Plomin, R., & Deary, I. J. (2015). Genetics and intelligence differences: Five special findings. *Molecular Psychiatry*, 20(1), 98-108.

Riñeris, C., Templer, D. I., & Kawakami, A. (1980). ABO blood groups and personality traits. *Personality and Individual Differences*, 1(4), 223-28.

Rogers, J., & Glendon, A. I. (2003). Personality and the ABO blood group system: A critical review. *Personality and Individual Differences*, 35(6), 1321-31.

Rupok, A. M., Dey, S., & Bostami, I. A. (2021). Blood type and personality: A systematic review. *Journal of Individual Differences*, 42(2), 85-94.

Sakamoto, H. (2018). Blood type and personality in East Asia: Cultural beliefs and scientific evidence. *Asian Journal of Social Psychology*, 21(3), 198-210.

Templer, D. I., Riñeris, C., & Kawakami, A. (1990). ABO blood groups and personality dimensions in adults. *Personality and Individual Differences*, 11(4), 413-17.

Tsuchimine, S., Kumagai, T., & Suzuki, T. (2015). ABO blood type and personality traits: Empirical evidence and limitations. *Journal of Individual Differences*, 36(4), 210-17.

Wu, S., Ma, Y., & Chen, L. (2005). ABO blood type and personality: A cross-sectional study in a Chinese sample. *Personality and Individual Differences*, 38(6), 1425-33.

Yazer, M. H., Triulzi, D. J., & Strauss, R. G. (2019). The ABO blood group system: Implications for transfusion medicine. *Transfusion Medicine Reviews*, 33(1), 12-19.

Young, J. E., Klosko, J. S., & Weishaar, M. E. (2003). *Schema therapy: A practitioner's guide*. Guilford Press.

Date of Publication	November 15, 2025
---------------------	-------------------